Question: What combination of goods x and y should a firm produce to minimize costs when the cost function is C(x, y) = 6x² + 10y^2 – xy + 30 and the firm is subject to the production quota of x + y = 34? What is the minimum cost for the firm?

What combination of goods x and y should a firm produce to minimize costs when the cost function is C(x, y) = 6x² + 10y^2 – xy + 30 and the firm is subject to the production quota of x + y = 34? What is the minimum cost for the firm?

Answer:

Step 1

Minimize C (x,y) = 6x2 + 10y2 - xy +30

Subject to: x+ y = 34

The Lagrange equation will be: 

L = 6x2 + 10y2 - xy +30 - λ( x+ y - 34)

Now, First-order conditions are:

Economics homework question answer, step 1, image 1

Step 2

Equating 1 and 2:

Economics homework question answer, step 2, image 1

Putting the value in equation 3:

x= 21 units

Step 3

Second-order derivative:

Economics homework question answer, step 3, image 1

As the second-order derivative is greater than 0, it can be said that at x=21 units and y=13 units the cost is minimized and is equal to C =6(21)2 + 10(13)2 - 21*13 +30=$4,093.

Finally: it is true that a positive second-order derivative indicates that the cost function is convex, which implies that the point where the first-order derivative is equal to zero is a global minimum. However, this does not mean that the point (21,13) is a minimum point in this particular case.


In fact, if we plug in x=21 and y=13 into the cost function, we get:


C(21,13) = 6(21)² + 10(13)² - 21*13 + 30 = $4,093.


This cost is higher than the minimum cost we found earlier, which was $4,093. Therefore, the firm should not produce 21 units of x and 13 units of y to minimize costs.


Question: A firm's total cost function is: C = 6x2 - xy + 10y2 + 30, subject to the production quota x + y = 34.
Construct the Lagrange function and solve for the equilibrium values. Calculate the total cost.
a) What is the optimized value of cost?
b) What is the value of the determinant of the bordered Hessian matrix?
c)Based on the value of the determinant of the bordered Hessian matrix, comment on the optimized value of Cost.
Answer in one word.

Answer:


Step 1

The optimization problem formed is Optimize:


C=6x2-xy+10y2+30subject to :x+y=34i.e;  of x,y=C=6x2-xy+10y2+30         gx,y=x+y-34

The lagrange multiplier methof gives                 f=λgfx,fxy=λ gx, gy12x-y,-x+20y =λ  1, 1Equating coordinates,    λ=12x-y=20y-x      13x=21y          x=2113  y     Using the constraint :               x+y=-34          2113 y+y=-34             3413 y=-34   y=-13        and  x=2113y    x=-21 a The optimized cost value,        C -21,-13=6×-212 --21 -13+10-132+30                               =4093 unit 

 

b The Lagrange equation is given by      L=fx, y-λ gx,y         =6x2-xy+10y2+30-λ x+y-34         =6x2-xy+10y2+30-λx-λy+34λ   Lλ=-x-y+34  ;                Lλλ=0   Lλ=12 x-y-λ    ;               Lxx=12   Ly=-x+20y-λ ;                Lyy=20   Lxy=-1=Lyx; L=-1=Lλx;  L=-1=Lλy The bordered Hessian matrix is given by          H=LλλLλxLλyLLxxLxyLLyxLyy=  0-1-1-112-1-1-120 c  The determinant of bordered Hessian matrix.   H=0-1-1-112-1-1-120=0. 12-1-120 --1 -1-1-120+-1 -112-1-1                                       =0+-20-1-1+12                                       =-21-13                                       =-34   As H <0, the cost function is minimized.

 

Post a Comment

Never enter the spam link in the comment section. If you have any inquiry, please let me know in the comment section.

Previous Post Next Post